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Global Constraints: Generalised Arc Consistency 

 

• It is often important to define n-ary “global” constraints, for at least 

two reasons 

• Ease the modelling of a problem  

• Exploitation of specialised algorithms that take the semantics of 

the constraint for efficient propagation, achieving generalised arc 

consistency. 

• The generalised arc consistency (GAC) criterion sees that no value 

remains in the domain of a variable with no support in values of each 

of the other variables participating in the “global” constraint.  

Example: all_different ([A1, A2, ..., An]) 

 Constrain a set of n variables to be all different among themselves 
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Global Constraints: all_different 

• The constraint definition (all_different/1) based on binary difference 

constraints () does not pose any problems as much as modelling is 

concerned. For example, it may be defined recursively in CLP. 

 

 

 

 

• However, constraint propagation based on binary constraints alone 

does not provide in general much propagation. 

• As seen before, arc consistency is not any better than node 

consistency, and higher levels of consistency are in general too 

costly and do not take into account the semantics of the all_different 

constraint. 

one_diff(_,[]). 

one_diff(X,[H|T]):- 

X #\= H,   

one_diff(X,T). 

all_different([]). 

all_different([H|T]):- 

one_diff(H,T), 

all_different(T). 
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Global Constraints: alldifferent 

 

Example:  

 X1: 1,2,3 X6: 1,2,3,4,5,6,7,8,9 

 X2: 1,2,3,4,5,6 X7: 1,2,3,4,5,6,7,8,9 

 X3: 1,2,3,4,5,6,7,8,9 X8: 1,2,3 

 X4: 1,2,3,4,5,6 X9: 1,2,3,4,5,6 

 X5: 1,2,3  

• It is clear that constraint propagation based on maintenance of node-, 

arc- or even path-consistency would not eliminate any redundant 

label.  

• Yet, it is very easy to infer such elimination with a global view of the 

constraint! 
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Global Constraints: all_different 

• Variables X1, X5 and X8 may only take values 1, 2 and 3. Since there 

are 3 values for 3 variables, these must be assigned these values 

which must then be removed from the domain of the other variables. 

 

 

 

• Now, variables X2, X4 and X9 may only take values 4, 5 e 6, that 

must be removed from the other variables domains. 

 

X1: 1,2,3     X2: 1,2,3,4,5,6  X3: 1,2,3,4,5,6,7,8,9 

X4: 1,2,3,4,5,6    X5: 1,2,3  X6: 1,2,3,4,5,6,7,8,9 

X7: 1,2,3,4,5,6,7,8,9  X8: 1,2,3 X9: 1,2,3,4,5,6 

X1: 1,2,3     X2: 1,2,3,4,5,6  X3: 1,2,3,4,5,6,7,8,9 

X4: 1,2,3,4,5,6    X5: 1,2,3  X6: 1,2,3,4,5,6,7,8,9 

X7: 1,2,3,4,5,6,7,8,9  X8: 1,2,3 X9: 1,2,3,4,5,6 
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Global Constraints: all_different 

• In this case, these prunings could be obtained, by maintaining  

(strong) 4-consistency.  

• For example, analysing variables  X1, X2, X5 and X8, it would be 

“easy” to verify that from the d4 potential assignments of values to 

them, no assignment would include X2=1, X2=2, nor X2=3, thus 

leading to the prunning of X2 domain. 

• However, such maintenance is usually very expensive, 

computationally. For each combination of 4 variables, d4 tuples would 

be checked, with complexity O(d4). 

• In fact, in some cases, n-strong consistency would be required, so its 

naïf maintenance would be exponential on the number of variables, 

exactly what one would like to avoid in search! 
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Global Constraints: all_distinct 

• However, taking the semantics of this constraint into account, an 

algorithm based on quite a different approach allows the prunings to 

be made at a much lesser cost, achieving generalised arc 

consistency. 

• Such algorithm is grounded on graph theory, and uses the notion of 

graph matching.  

• To begin with, a bipartite graph is associated to an all_distinct 

constraint. The nodes of the graphs are the variables and all the 

values in their domains, and the arcs associate each variable with 

the values in its domain. 

• In polynomial time, it is possible to eliminate from the graph, all arcs 

that do not correspond to possible assignments of the variables. 
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Global Constraints: all_distinct 

 

Key Ideas: 

• For each variable-value pair, there is an arc in the bipartite graph. 

• A matching, corresponds to a subset of arcs that link some variable 

nodes to value nodes, different variables being connected to different 

values. 

• A maximal matching is a matching that includes all the variable 

nodes. 

• For any solution of the all_distinct constraint there is one and only 

one maximal matching. 
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Global Constraints: all_distinct 

Example: 

A,B:: 1..2, C:: 1..3, D:: 2..5, E:: 3..6, 

  all_distinct([A,B,C,D,E]). 

 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 

A = 1 

B = 2 

C = 3 

D = 4 

E = 5 

Maximal Matching 
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Global Constraints: all_distinct 

 

• The propagation (domain filtering) is done according to the following 

principles:  

1. If an arc does not belong to any maximal matching, then it does 

not belong to any all_distinct solution. 

2. Once determined some maximal matching, it is possible to 

determine whether an arc belongs or not to any maximal matching. 

3. This is because, given a maximal matching, an arc belongs to any 

maximal matching iff it belongs: 

a) To an alternating cycle; or 

b) To an even alternating path, starting at a free node. 
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Global Constraints: all_distinct 

Example:  For the maximal matching (MM) shown 

• 6 is a free node;  

• 6-E-5-D-4 is an even alternating path, 

alternating arcs from the MM (E-5, D-4) with 

arcs not in the MM (D-5, E-6); 

• A-1-B-2-A is an alternating cycle; 

• E-3 does not belong to any alternating cycle 

• E-3 does not belong to any even alternating 

path starting in a free node (6) 

• E-3 may be filtered out! 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 
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Global Constraints: all_distinct 

 

• Compaction 

– Before this analysis, the graph may be “compacted”, aggregating, 

into a single node, “equivalent nodes”, i.e. those belonging to 

alternating cycles. 

– Intuitively, for any solution involving these variables and values, a 

different solution may be obtained by permutation of the 

corresponding assignments. 

– Hence, the filtering analysis may be made based on any of these 

solutions, hence the set of nodes can be grouped in a single one. 
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Global Constraints: all_distinct 

• A-1-B-2-A is an alternating cycle; 

• By permutation of variables  A and B, the 

solution <A,B,C,D,E> = <1,2,3,4,5> 

becomes <A,B,C,D,E> = <2,1,3,4,5>  

• Hence, nodes  A e B, as well as nodes 1 

and 2 may be grouped together (as may the 

nodes D/E and 4/5). 

A/B 

C 

4/5 

3 

6 

D/E 

1/2 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 

With these grouping the graph 

becomes much more compact 
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Global Constraints: all_distinct 

Analysis of the compacted graph shows that 

A/B 

C 

4/5 

3 

6 

D/E 

1/2 

A/B 

C 

4/5 

3 

6 

D/E 

1/2 

• Arc D/E - 3 may be filtered out 

(notice that despite belonging to 

cycle  D/E - 3 - C - 1/2 - D/E, this 

cycle is not alternating. 

• Arcs D/E - 1/2 and C - 1/2 may 

also be filtered. 

The compact graph may thus be 

further simplified to 
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Global Constraints: all_distinct 

By expanding back the simplified compact graph, one gets the graph on 

the right 

A/B 

C 

4/5 

3 

6 

D/E 

1/2 

Which immediately sets C=3 and, more generally, filters the initial 

domains to 

    A,B :: 1..2, C:: 1,2,3, D:: 2,3,4,5, E:: 3,4,5,6 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 
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Global Constraints: all_distinct 

• Upon elimination of some labels (arcs), possibly due to other 

constraints, the alldifferent constraint propagates such prunings, 

incrementally. There are 3 situations to consider: 

1. Elimination of a vital arc (the only arc connecting a variable node 

with a value node): The constraint cannot be satisfied. 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 

? 
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Global Constraints: all_distinct 

2. Elimination of a non-vital arc which is a member of the maximal 

matching 

– Determine a new maximal matching and restart from there. 

A new maximal matching includes arcs D-5 and E-6. In this matching, arc 

E-5 does not belong to even alternating paths or alternating cycles. 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 
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Global Constraints: all_distinct 

3. Elimination of a non-vital arc which is not a member of the 

maximal matching 

– Eliminate the arcs that do not belong any more to an alternating 

cycle or path. 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 

6 

Arc A-4 does not belong to the even alternating path started in node 6. 

D-5 also leaves this path, but it still belongs to an alternating cycle. 
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Global Constraints: all_distinct 

Time Complexity:  

 Assuming n variables, each of which with d values, and where D is 

the cardinality of the union of all domains, 

1. It is possible to obtain a maximal matching with an algorithm of 

time complexity O(dnn). 

2. Arcs that do not belong to any maximal matching may be 

removed with time complexity O(dn+n+D). 

3. Taking into account these results, we obtain complexity of 

O(dn+n+D+dnn). Since D < dn, the total time complexity of the 

algorithm is dominated by the last term, thus becoming 

O(dnn). 

 which is much better than the poor result with a naïf analysis. 
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Global Constraints: alldifferent 

Availability:  

1. The all_diff constraint first appeared in the CHIP system (algorithm?). 

2. The described implementation is incorporated into the ILOG system, and 

available as primitive IlcAllDiff. 

3. This algorithm is also implemented in SICStus, through buit-in constraint 

all_distinct/1. 

Other versions of the constraint, namely all_different/2, are also available, possibly 

using a faster algorithm but with less pruning, where the 2nd argument controls the 

available pruning options. 

4. In ECLiPSe, the global constraint alldifferent/1 is in fd_global library. 

(fd:alldifferent only posts difference constraints for all pairs of variables). 

alldifferent(+List, ++Capacity) is a generalization allowing repeated 

elements (up to Capacity, of each value) 
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Global Constraints: Assignment 

• The  alldifferent constraint is typically applicable to problems where it 

is intended that different tasks are executed by different agents (or 

use different resources). 

• However, tasks and resources are treated differently. Some are 

variables and the others the domains of these variables. For 

example, denoting 4 tasks/resources by variables Ti / Rj, one would 

have to chose either one of the specifications below 

T1 :: 1..3, T2 :: 2..4, T3 :: 1..4, T4 :: 1..3. 

or 

R1 :: [1,3,4], R2 :: 1..4, R3 :: 1..4, R4 :: [2,3] 

• Hence, other constraints could be specified either on tasks or on 

resources, but not easily involving both types of objects 
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Global Constraints: Assignment 

• Such “unfairness” may be overcome by treating both tasks and 

resources in a similar way, namely modelling both with distinct 

variables. 

• These variables still have to adhere to the constraint that different 

tasks are performed in different resources.  

• Also, if a task j is assigned to resource i, then resource i is assigned 

to task j. Denoting tasks by Tj and resources by Ri, the following 

condition must stand for any i, j 1..n 

Ri = j  Tj = i 

• This is the goal of global constraint assignment/2, available in 

SICStus (not in ECLiPSe), that uses the same propagation 

technique of all_distinct. 
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Global Constraints: Assignment 

Example:   

   T1::1..2, T2::1..2, T3::1..3, T4::2..5, T5:: 3..5, 

   R1::1..3, R2::1..4, R3::3..5, R4::4..5, R5:: 4..5, 

   assignment([T1,T2,T3,T4,T5], [R1,R2,R3,R4,R5]). 

T1 = 1 

T2 = 2 

T3 = 3 

T4 = 4 

T5 = 5 

T1 

T2 

T3 

T4 

T5 

R1 

R2 

R3 

R4 

R5 

maximal 

matching 
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Global Constraints: Assignment 

Since the assignment constraint imposes a maximal matching in the 

bipartite graph of tasks Ti and resources Rj, the same filtering techniques 

of the all_distinct constraint can be used. Hence the initial domains are 

filtered to  

   T1:1..2, T2::1..2, T3::  3 , T4::4..5, T5:: 4..5. 

   R1:1..2, R2::1..2, R3::  3 , R4::4..5, R5:: 4..5. 

T1 

T2 

T3 

T4 

T5 

R1 

R2 

R3 

R4 

R5 

T1 

T2 

T3 

T4 

T5 

R1 

R2 

R3 

R4 

R5 
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Global Constraints: Assignment 

An assignment([R1,...Rn], [T1,...Tn]) constraint can be implemented in 

ECLiPSe with the same declarative meaning (although not reasoning 

globally), using reification/equivalence: 

 

 R1 #= 1 #<=> T1 #= 1, 

 R1 #= 2 #<=> T2 #= 1, 

 R1 #= 3 #<=> T3 #= 1, 

... 

 R1 #= n #<=> Tn #= 1, 

 R2 #= 1 #<=> T1 #= 2, 

 R2 #= 2 #<=> T2 #= 2, 

... 

 R2 #= n #<=> Tn #= 2, 

.... 

 Rn #= 1 #<=> T1 #= n, 

... 

 Rn #= n #<=> Tn #= n, 
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Global Constraints: Circuit 

 

• The previous global constraints may be regarded as imposing a 

certain “permutation” on the variables. 

• In many problems, such permutation is not a sufficient constraint. It 

is necessary to impose a certain “ordering” of the variables. 

• A typical situation occurs when there is a sequencing of tasks, with 

precedences between tasks, possibly with non-adjacency constraints 

between some of them. 

• In these situations, in addition to the permutation of the variables, 

one must ensure that the ordering of the tasks makes a single cycle, 

i.e. there must be no sub-cycles.  
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Global Constraints: Circuit 

• These problems may be described by means of directed graphs, 

whose nodes represent tasks and the directed arcs represent 

precedences. 

 

 

 

 

• The arcs may even be labelled by “features” of the precedences, 

namely transition times. 

• This is a situation typical of several problems of the travelling 

salesman type. 

A B 

C D 

A B 

C D 

2 

3 

4 5 6 

9 

8 

7 

2 

2 

2 
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Global Constraints: Circuit 

• Filtering: For these type of problems, the arcs that do not belong to 

any hamiltonian circuit should be eliminated. 

• In the graph, it is easy to check that the only possible circuits are   

A->B->D->C->A and A->C->D->B->A. Certain arcs (e.g. B->C,      

B->B, ...), may not belong to any hamiltonian circuit and can be 

safely pruned. 

 

A B 

C D 

A B 

C D 
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Global Constraints: Circuit 

• The pruning of the arcs that do not belong to any circuit is the goal 

of the global constraint circuit/1, available in SICStus. 

• This constraint is applicable to a list of domain variables, where the 

domain of each corresponds to the arcs connecting that variable to 

other variables, denoted by the order in which they appear in the 

list. 

 

For example:   

   A in 2..3,   B in 1..4,  

   C in 1..4,   D in 2..3, 

   circuit([A,B,C,D]). 

A/1 B/2 

C/3 D/4 

A=2 

A=3 
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Global Constraints: Circuit 

• Global constraint circuit/1 incrementally achieves the pruning of the 

arcs not in any hamiltonian circuit. For example, posting 

domain([A,D],2,3), B in 1..4, C in 1..4, 

circuit([A,B,C,D]). 

The following prunning is achieved 

     A in 2..3, B in 1,2,3,4, C in 1,2,3,4, D in 2..3,  

since the possible solutions are 

[A,B,C,D] = [2,4,1,3] and [A,B,C,D] = [3,1,4,2]  

A B 

C D 

A B 

C D 
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Global Constraints: Element 

For example, the value X from the arc that 

leaves node A, depends on the arc chosen: 

   if A = 2 then X = 3,  

 if A = 3 then X = 4; 

    otherwise X = undefined 

A/1 B/2 

C/3 D/4 

2 

3 

4 5 
6 

9 

8 

7 

2 

2 

2 

The disjunction implicit in this definition raises, as well known, problems 

of efficiency to constraint propagation. 

Often a variable not only has its values constrained by the values of 

other variables, but it is actually defined conditionally in function of 

these values. 
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Global Constraints: Element 

In fact, the value of X may only be known upon labelling of variable A. 

Until then, a naïf handling of this type of conditional constraint would 

infer very little from it. 

However, if other problem constraints impose, for example, X < 4, an 

efficient handling of this constraint would impose  

not only X = 3 but also A = 2. 

   if A = 2 then X = 3,  

 if A = 3 then X = 4; 

    otherwise X = undefined 

A/1 B/2 

C/3 D/4 

2 

3 

4 5 
6 

9 

8 

7 

2 

2 

2 
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Global Constraints: Element 

 

• The efficient handling of this type of disjunctions is the goal of global 

constraint element/3, available in SICStus, ECLiPSe, and CHIP.  

element(X, [V1,V2,...,Vn], V) 

• In this constraint, X is a variable with domain 1..n,  and both V and 

the Vis are either finite domain constraints or constants. The 

semantics of the constraint can be expressed as the equivalence 

X = i  V = Vi 

• From a propagation viewpoint, this constraint imposes arc 

consistency in X and bounds consistency in V. It is particularly 

optimised for when all Vis are ground (actually ECLiPSe requires 

this). 
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Global Constraints: Element & Circuit 

• Global constraints may be used together. In particular, constraints 

element and circuit may implement the travelling salesman: For 

some graph, determine an hamiltonian circuit whose length does not 

exceed Max (say 20). 

circ([A,B,C,D], Max, Cost):- 

   A in 2..3, B in 1..4,  

   C in {1}\/{3,4}, D in 2..3, 

   circuit([A,B,C,D]), 

   element(A,[_,3,4,_],Ca), 

   element(B,[2,2,5,6],Cb), 

   element(C,[2,_,2,9],Cc), 

   element(D,[_,8,7,_],Cd), 

   Cost #= Ca+Cb+Cc+Cd, 

   Cost #=< Max, 

   labeling([],[A,B,C,D]). 

A/1 B/2 

C/3 D/4 

2 

3 

4 5 
6 

9 

8 

7 

2 

2 

2 
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Global Constraints: Global Cardinality 

 

• Many scheduling and timetabling problems, have quantitative 

requirements of the type  

in these N “slots” M must be of type T 

• This type of constraints may be formulated with a cardinality 

constraint. In some systems, these cardinality constraints are given 

as built-in, or may be implemented through reified constraints. 

• In particular, in ECLiPSe the constraint occurrences/3 may be used 

to count elements in a list, which replaces some uses of the 

cardinality constraints (see ahead). 

• However, cardinality may be further generalized and more efficiently 

propagated if considered globally. 
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Global Constraints: Global Cardinality 

 
 

• For example, assume a team of 7 people (nurses) where one 

or two must be assigned the morning shift (m), one or two the 

afternoon shift (a), one the night shift (n), while the others may 

be on holiday (h) or stay in reserve (r).  

• To model this problem, let us consider a list L, whose 

variables Li corresponding to the 7 people available, may take 

values in domain {m, a, n, h, r} (or {1, 2, 3, 4, 5} in languages 

like ECLiPSe that require domains to range over integers). 

• Both in ECLiPSe and in CHIP this complex constraint may be 

decomposed in several cardinality constraints. 



36 

Global Constraints: Global Cardinality 

 

 

ECLiPSe:    length(L,7), L :: 1..5, 

occurrences(1,L,N1), N1 :: [1,2],  % m/1: 1 or 2 

occurrences(2,L,N2), N2 :: [1,2],  % a/2: 1 or 2 

occurrences(3,L,1),    % n/3: 1 only 

occurrences(4,L,N4), N4 :: 0..2,   % h/4: 0 to 2 

occurrences(5,L,N5), N5 :: 0..2   % r/5: 0 to 2 

 

CHIP: 

among([1,2],L,_,[1]),    % m/1: 1 or 2 

among([1,2],L,_,[2]),     % a/2: 1 or 2 

among(  1  ,L,_,[3]),     % n/3: 1 only 

among([0,2],L,_,[4]),     % h/4: 0 to 2 

among([0,2],L,_,[5]),     % r/5: 0 to 2 
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Global Constraints: Global Cardinality 

 
 

• Nevertheless, the separate, or local, handling of each of these 

constraints, does not detect all the pruning opportunities for the 

variables domains. Take the following example: 

A,B,C,D::{m,a}, E::{m,a,n}, F::{a,n,h,r}, G ::{n,r}  

 

m {1,2} 

F 

D 

E 

A 

B 

C 

G 

a {1,2} 

n {1,1} 

h {0..2} 

r {0..2} 
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Global Constraints: Global Cardinality 
 
 

  A,B,C,D::{m,a}, E::{m,a,n}, F::{a,n,h,r}, G ::{n,r} 

• A, B, C and D may only take values m and a. Since these may only 
be attributed to 4 people, no one else, namely E or F, may take 
these values m and a. 

• Since E may now only take value n, which must be taken by a single 
person, no one else (e.g. F or G) may take value n. 

 

 

 
m {1,2} 

F 

D 

E 

A 

B 

C 

G 

a {1,2} 

n {1,1} 

h {0..2} 

r {0..2} 

m {2}  

F 

D 

E 

A 

B 

C 

G 

a {2} 

n {1} 

h {0,1} 

r {1,2} 
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Global Constraints: Global Cardinality 

• This filtering, that could not be found in each constraint alone, can be 

obtained with an algorithm that uses analogy with results in 

maximum network flows. 

• A global cardinality constraint gcc/4 (not available in ECLiPSe nor 
SICStus),  

– constrains a list of k variables  X = [X1, ..., Xk] , 

– taking values in the domain (with m values) V = [v1, ..., vm],  

– such that each of the vi values must be assigned to between Li 
and Mi variables. 

• Then, m ECLiPSe constraints 
... 

occurrences(vi,X,Ni), Ni :: Li..Mi  
... 

 could be replaced by constraint 

 gcc([X1....,Xk],[v1,...,vm],[L1,...,Lm],[M1,...,Mm]) 
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The Cardinality Operator 

• A related constraint is the Cardinality operator 

• In ECLiPSe it is present in the fd library as #(?Min, ?Cstrs, ?Max), a 

meta constraint known in the literature as the cardinality operator. 

Cstrs is a list of constraint expressions and this operator states that 

at least Min and at most Max out of them are valid. 

• E.g.   #(2, [X#>0, Z#>=0, X+Y#=7, 2*Z-Y#>X], 3) 

• Example implementation (for triples) using reification: 

#(Min, [C1,C2,C3], Max):- 

B1 isd C1, 

B2 isd C2, 

B3 isd C3, 

occurences(1, [B1,B2,B3], NValid), 

NValid :: Min..Max. 
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Global Constraints for Scheduling 

• There are important constraints in a variety of scheduling 

problems (job-shop, timetabling, etc...). 

Some important constraints are 

• Precedence : one task executes before the other 

• Non-overlapping: Two tasks should not execute at the 

same time (e.g. they share the same resource). 

• Cumulating: The number of tasks that execute at the same 

time must not exceed a certain number (e.g. the number of 

resources, such as machines or people, that must be 

dedicated to one of these tasks). 



42 

Precedence 

• In general, each task i is modelled by its starting time Ti and its 

duration Di, which may both be either finite domain variables 

or fixed to constant values. Hence, the precedence of task i 

with respect to task j may be expressed simply as 

                   before(Ti, Di, Tj) :- 
               Ti + Di #=< Tj. 

• In practice, such specification of precedence uses bounds 

consistency. 
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Non-overlapping 

• The non overlapping of tasks is equivalent to the disjunction 

of two precedence constraints. Either  

• Task i executes before Task j; or 

• Task j executes before Task i. 

• Many different possibilities exist to implement this disjunction, 

namely, by means of:  

1. Alternative clauses; 

2. Least commitment; 

3. Constructive Disjunction; 

4. Specialised global constraints 
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Non-overlapping 

Example 

 Let us consider a project with the four 

tasks illustrated in the graph, showing 

precedences between them, as well as 

mutual exclusion (). The durations are 

shown in the nodes. 

 The goal is to schedule the tasks so that 

T4 ends no later than time 10.  

 

project(T):- 

   T = [T1,T2,T3,T4], T :: 1..10,  

   before(T1, 2, T2),   before(T1, 2, T3), 

   before(T2, 4, T4),   before(T3, 3, T4), 

   before(T4, 1, 10), 

   no_overlap(T2,4, T3,3). 

T1/2 

T3/3 T2/4 

T4/1 
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Non-overlapping 

Alternative clauses  

• In a Constraint Logic Programming system, the disjunction of 

constraints may be implemented with a Logic Programming style (a 

la Prolog): 

    no_overlap(T1, D1, T2,  _):- 

       before(T1, D1, T2). 

    no_overlap(T1,  _, T2, D2):- 

       before(T2, D2, T1).  

This implementation always tries first to schedule task T1 before T2, and 

this may be either impossible or undesirable in a global context. 

This greatest commitment will usually show poor efficiency (namely 

in large and complex problems). 
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Non-overlapping 

Least Commitment 

• The opposite least commitment implementation may be made 

through the cardinality constraint 

  no_overlap(T1,D1,T2,D2):- 

     #(1, [T1 + D1 #=< T2, T2 + D2 #=< T1], 1). 

 or directly, with propositional constraints 

   no_overlap(T1,D1,T2,D2):- 
       (T1 + D1 #=< T2) #\/ (T2 + D2 #=< T1). 

 or even with reified constraints 

  no_overlap(T1,D1,T2,D2):- 

     (T1 + D1 #=< T2) #<=> B1,  

     (T2 + D2 #=< T1) #<=> B2,  

       B1 + B2 #= 1. 

• When enumeration starts, if eventually one of the constraints is 

disentailed, the other is enforced. 
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Non-overlapping 

Constructive Disjunction 

• With constructive disjunction, the values that are not part of 

any solution may be removed, even before a commitment is 

made regarding which of the tasks is executed first.  Its 

implementation may be done with the appropriate propagation. 

• E.g, for no_overlap(T1,4, T2,5) with T1,T2 :: 0..5 

 Tasks domains can be reduced to  

T1 :: [0,1,5] 

T2 :: [0,4,5] 
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Redundant Constraints 

Redundancy 

• Often, not even the specification with a global constraint is 

able to infer all the pruning that should have been made.  

• This is of course a common situation, as the constraint 

solvers are incomplete. 

• In many situations it is possible to formulate constraints 

which can be deduced from the initial ones, i.e. that should 

not make any difference in the set of results obtained.    

• However, if properly thought of, they may provide a precious 

support to the constraint solver, enabling a degree of pruning 

that the solver would not be able to make otherwise . 
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Redundant Constraints 

Redundancy 

• Hence the name of redundant constraints. Careful use of such 

constraints may greatly help to increase the efficiency of constraint 

solving. 

• Of course, it is up to the user to understand the working of the 

solver, and its pitfalls, in order to formulate adequate redundant 

constraints. 

• In our previous example, since tasks 2 and 3 are mutually exclusive, 

T4 must wait at least the total duration of both, after the first starts. 

• Hence, task T4 may never start before 

min(min(T2),min(T3))+D2+D3 

 

T1/2 

T3/3 T2/4 

T4/1 
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Non-overlapping 

Results: Redundant constraints / Least Commitment 

• Adding the redundant constraints to the formulation of least 

commitment, the tasks T1 and T4 become well delimited, although 

as expected, no significant cuts are obtained in tasks T2 and T3. 

|? T in 1..11, project(T). 

     T1 in 1 .. 2, 

  T2 in 3 .. 7, 

  T3 in 3 .. 8, 

  T4 in 10 .. 11        ? ; 

    no 

|? T in 1..10, project(T). 

  T1 = 1, 

  T2 in 3 .. 6, 

  T3 in 3 .. 7, 

  T4 = 10      ? ; 

    no 
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Non-overlapping 

Results: Redundant constraints / Constructive Disjunction 

• Adding the redundant constraints to the formulation of  constructive 

disjunction, not only T1 and T4 become well delimited, but also T2 

and T3 are adequately pruned. 

|? T in 1..11, project(T). 

     T1 in 1 .. 2, 

  T2 in(3..4) \/ (6..7), 

  T3 in(3..4) \/ (7..8), 

  T4 in 10 .. 11        ? ; 

    no 

|? T in 1..10, project(T). 

  T1 = 1, 

  T2 in {3}\/{6}, 

  T3 in {3}\/{7}, 

  T4 = 10      ? ; 

    no 
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Global Constraints: cumulative 

• A general global constraint for tasks with starting times in T 

and durations in D  

cumulative(T,D,R,L) 

• For a set of tasks Ti, with durations Di and that use an 

amount Ri of some resource, this constraint guarantees that 

at no time there are more than L units of the resource being 

used by the tasks. 

• If each task uses 1 unit of a resource for which there is only 

that unit available, we have 

cumulative(T,D,[1,1,...1],1) 
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Global Constraints: cumulative 

• The global constraint cumulative/4 allows not only to reason 

efficiently and globally about the tasks, but also to specify in a 

compact way this type of constraints, whose decomposition in 

simpler constraints would be very cumbersome. 

• Its semantics is as follows 

 Let   

  a = mini(Ti)  ; 

  b = maxi(Ti+Di); 

  Si,k = Ri if  Ti =< k < Ti+Di  or 0 otherwise.  

 Then    

     cumulative(T,D,R,L)       Si,k  L 
   k[a,b] i 
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Global Constraints: cumulative 

 

• This global constraint, cumulative/4, was initially introduced 

in the CHIP system (1994) aiming at the efficient execution of 

a number of problems namely, 

1.  Scheduling of disjoint tasks 

2.  Scheduling of tasks with resource limitations 

3.  Placement problems  
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Global Constraints: cumulative - Scheduling 

Example:  

 Take 7 tasks (A to G) with the duration and resource consumption 

(e.g. number of workers needed to carry them out) specified in the 

following lists 

D = [ 2 , 4 , 3 , 2 , 1 , 2 , 2 ]      ;     R = [4 , 1 , 3 , 1 , 2 , 3 , 2 ] 

 Find whether the tasks may all be finished in a given due time 

Tmax, assuming there are Rmax resources (e.g. Workers) available 

at all times (cumulative(T,D,R,Rmax), and maxi(Ti+Di)Tmax)). 

Graphically, the tasks can be viewed as 
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Global Constraints: cumulative - Scheduling 

Results 

 With Tmax = 9 and Rmax = 4 a number of answers are obtained, 

namely   (numbers represent T, the list of starting times of the 7 tasks) 

  

  

1 3 3 7 9 6 8

6 1 1 8 5 8 4

4

3

2

1

1 2 3 4 5 6 7 8 9

8 1 3 5 7 1 6

R 

t 
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Global Constraints: cumulative - Scheduling 

Results 

 With Tmax = 7 and Rmax = 5 (in this case, no resources may be 

spared), a number of answers are still obtained, such as 

  

  

1 1 3 3 5 6 6 4 4 1 6 3 6 1
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Global Constraints: cumulative - Scheduling 

Results 

 With Tmax = 6 and Rmax = 6 (in this case, one of the 6 workers 

may rest for an hour), still a number of answers are obtained, 

namely 

 

 

 

 

 

 

 

 

Question: What about Tmax = 5 and Rmax = 7 ?  

1 1 3 1 6 5 3 5 3 2 5 1 1 3
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Global Constraints: cumulative - Scheduling 

• In some applications, tasks are flexible, in the sense that time may 

be traded for resources. 

• For example, a flexible task might require either 2 workers working 

for 3 hours, or 3 workers working for 2 hours. It may even be 

executed by a single worker during 6 hours, or by 6 workers in 1 

hour. 

• Flexible tasks may be more easily accommodated within the 

resources (and time) available.  

• Scheduling of this type of tasks may be specified as before. 

However, whereas in the previous case, the durations and 

resources were constants Kdi e Kri , the durations Di and resources 

Ri of flexible tasks must be constrained by 

Di * Ri #= Kdi * Kri  
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Global Constraints: cumulative - Scheduling 

• The program below is similar to the previous, but imposes flexibility 

on tasks with predicate constrain_tasks/4. Of course, since both 

the durations and resources are now variables, labelling must be 

made in (one of) such variables. 

 plan2(Tmax,Rmax, T, D, R):- 

     T  = [T1,T2,T3,T4,T5,T6,T7], 

  T :: 1..15, 

  D  = [D1,D2,D3,D4,D5,D6,D7], 

  Dc = [ 2, 4, 3, 2, 1, 2, 2], 

  R  = [R1,R2,R3,R4,R5,R6,R7], 

  Rc = [ 4, 1, 3, 1, 2, 3, 2], 

  constrain_tasks(D,R,Dc,Rc), 

  cumulative(T,D,R,Rmax), 

  latest(T,D,Tmax), 

  append(T,D,V), 

  labeling(V). 
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Global Constraints: cumulative - Scheduling 

• Predicate constrain_tasks/4 is implemented as shown below. 

Variables in D and R are assigned initial domains 1..9 , and for each 

task, the constraint specifying flexibility is imposed. 
 
 

 

constrain_tasks([],[],[],[]). 

constrain_tasks([D1|Dt1],[R1|Rt1],[D2|Dt2],[R2|Rt2]):- 

  [D1,R1] :: 1..9, 

  D1 * R1 #= D2 * R2, 

  constrain_tasks(Dt1,Rt1,Dt2,Rt2). 
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Global Constraints: cumulative - Scheduling 

Results 

 With Tmax = 6 and Rmax = 6 (1 spare hour*worker) new solutions 
are obtained, such as   

 

 

 

 

 

 

 

 

D 2 1 3 1 1 2 2

R 4 4 3 2 2 3 2

T 4 6 1 5 6 1 3
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Global Constraints: cumulative - Scheduling 

Results 
 With Tmax = 5 and Rmax = 7 (previously impossible) there are now 

several solutions. (Notice the “deeper” transformation in task 2, from 

(4*1  2*2), in addition to a “rotation”). 

  

 

 

 

 

 

 

 

 

D 2 4 3 1 1 2 2

R 4 1 3 2 2 3 2

T 4 2 1 1 1 2 4

D 2 2 3 1 1 2 2

R 4 2 3 2 2 3 2

T 1 4 1 5 3 4 3
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Global Constraints: cumulative - Scheduling 

ECLiPSe 
 cumulative/4 is available in ECLiPSe in 3 different libraries: cumulative, 

edge_finder, and edge_finder3 

 

cumulative:cumulative(+StartTimes, +Durations, +Resources, ++ResourceLimit) 

 is the weakest 

  
edge_finder:cumulative/4 is quadratic 

 
edge_finder3:cumulative/4 is cubic but computationally heavier 

 

edge_finder and edge_finder3 also provide, for flexible tasks: 

 cumulative(+StartTimes, +Durations, +Resources, +Areas, ++ResourceLimit) 

where even the Areas can be FD variables 
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Global Constraints: cumulative - Scheduling 

SICStus 
   cumulative(+Tasks) 

   cumulative(+Tasks, +Options) 

  Tasks is a list of terms task(Si,Di,Ei,Ri,Ti), where: 

Si – Start time;   Di – Duration;   Ei – End Time 

Ri – Resource consumption;   Ti – Task identifier; 

(all may be domain variables) 

Options may contain {limit(L), precedences(Ps), global(Boolean)} 
 

For m machines there’s  cumulatives(+Tasks, +Machines [,+Options]): 

  Ti is replaced by Mi (machine identifier); 

   Ri may be negative (production); 

 Machines are terms machine(Mj, Lj)  (identifier and limit, integers) 

 Options in {bound(B), prune(P), generalization(Bool), task_intervals(Bool)} 

  

See manual… 
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Global Constraints: cumulative - Job-Shop 

 

• The job shop problem consists of executing the different tasks of 

several jobs without exceeding the available resources. 

• Within each job, there are several tasks, each with a duration. 

Within each job, the tasks have to be performed in sequence, 

possibly respecting mandatory delays between the end of a task 

and the start of the following task. 

• Tasks of different jobs are independent, except for the sharing of 

common resources (e.g. machines). 

• Each task must be executed in a machine of a certain type. The 

number of machines of each type is limited. 
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Global Constraints: cumulative - Job-Shop 

 

• An instance of the 10*10 job-shop is shown in the following table, 

where Y denotes the Y-th task of job X, to be executed in machine 

Z, with duration D 

Z, D 1 2 3 4 5 6 7 8 9 a

1 1, 29 2, 78 3,   9 4, 36 5, 49 6, 11 7, 62 8, 56 9, 44 a, 21

2 1, 43 3, 90 5, 75 a, 11 4, 69 2, 28 7, 46 6, 46 8, 72 9, 30

3 2, 91 1, 85 4, 39 3, 74 9, 90 6, 10 8, 12 7, 89 a, 45 5, 33

4 2, 81 3, 95 1, 71 5, 99 7,   9 9, 52 8, 85 4, 98 a, 22 6, 43

5 3, 14 1,   6 2, 22 6, 61 4, 26 5, 69 9, 21 8, 49 a, 72 7, 53

6 3, 84 2,   2 6, 52 4, 95 9, 48 a, 72 1, 47 7, 65 5,   6 8, 25

7 2, 46 1, 37 4, 61 3, 13 7, 32 6, 21 a, 32 9, 89 8, 30 5, 55

8 3, 31 1, 86 2, 46 6, 74 5, 32 7, 88 9, 19 a, 48 8, 36 4, 79

9 1, 76 2, 69 4, 76 6, 51 3, 85 a, 11 7, 40 8, 89 5, 26 9, 74

a 2, 85 1, 13 3, 61 7,   7 9, 64 a, 76 6, 47 4, 52 5, 90 8, 45

Tasks Y

J

o

b

s

 

X
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Global Constraints: cumulative - Job-Shop 

History 

• This instance was proposed in the book „Industrial Scheduling‟ in 

1963. 

• For 20 years no solution was found that optimised the “makespan”, 

i.e. the fastest termination of all tasks. 

• Around 1980, the best solution was 935 (time units). In 1985, the 

optimum was lower bounded to 930. 

• In 1987 the problem was solved with a highly specialised algorithm, 

that found a solution with makespan 930. 

• With the cumulative/4 constraint, in the early 1990‟s, the problem 

was solved in 1506 seconds (in a SUN/SPARC workstation). 
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Global Constraints: cumulative - Job-Shop 

• A simpler instance of the problem is given in the table below (with 

the corresponding graphic representation). 

• Notice that in this instance it is assumed that each task requires one 

unit of the resource shown, and that there are 2 units of resource 1 

and other 2 units of resource 2. 

J1

J2

J3

J4

1 2 3

1 2 3

1 2 3

1 2 3
Z, D 1 2 3

1 1 , 2 2 , 4 1 , 7

2 1 , 3 2 , 4 1 , 5

3 1 , 5 2 , 3 2 , 3

4 1 , 3 2 , 3 2 , 4

J

o

b

s

X

Tasks Y
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Global Constraints: cumulative - Job-Shop 

This instance of the problem may be easily solved by the following 
ECLiPSe program: 

jobs([J1,J2,J3,J4]):- 

% definition of the jobs 

  J1 = [S111,S122,S131]-[2,4,7]-[1,2,1], 
  J2 = [S211,S222,S231]-[3,4,5]-[1,2,1], 
  J3 = [S311,S322,S332]-[5,3,3]-[1,2,2], 
  J4 = [S411,S422,S432]-[3,3,4]-[1,2,2], 

% domain declarations 

  [S111,S122,S131] :: 0..15, 
  [S211,S222,S231] :: 0..15, 
  [S311,S322,S332] :: 0..15, 
  [S411,S422,S432] :: 0..15, 

% precedence constraints 

% resource limitation constraints 

% constraints on the end of the jobs 

% labelling of the tasks starting times  
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Global Constraints: cumulative - Job-Shop 

The constraints are as follows: 
% precedence constraints 

    S122#>=S111+2, S131#>=S122+4, 

    S222#>=S211+3, S231#>=S222+4, 

    S322#>=S311+5, S332#>=S322+3, 

    S422#>=S411+3, S432#>=S422+3, 

% resource limitation constraints 

    cumulative([S111,S131,S211,S231,S311,S411], 

               [2,7,3,5,5,3],  [1,1,1,1,1,1],2), 

    cumulative([S122,S222,S322,S332,S422,S432], 

               [4,4,3,3,3,4],  [1,1,1,1,1,1],2), 

% constraints on the end of the jobs 

    E #>= S131+7, E #>= S231+5,  

    E #>= S332+3, E #>= S432+4,   

    E #=< 13, 

% labelling of the tasks starting times 

    labeling([S111, S122, S131, S211, S222, S231,  

              S311, S322, S332, S411, S422, S432]). 
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Global Constraints: cumulative - Job-Shop 

The possible results, with termination no later than 13, are the following : 

| ?- jobs(J).         

J=[[0,2, 6]-[2,4,7]-[1,2,1],[0,3,7]-[3,4,5]-[1,2,1], 

   [2,7,10]-[5,3,3]-[1,2,2],[3,6,9]-[3,3,4]-[1,2,2]]?; 

 

 

 

 

J=[[0,2, 6]-[2,4,7]-[1,2,1],[0,3,8]-[3,4,5]-[1,2,1], 

   [2,7,10]-[5,3,3]-[1,2,2],[3,6,9]-[3,3,4]-[1,2,2]]?; 

 

 

 

no 

0 1 2 3 4 5 6 7 8 9 10 11 12

2

31

2 3

1

2 3

1

2

31

2 2 3

2 2 3

1 1

1 1 3

3
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Global Constraints: cumulative - Placement 

• Several applications of great (economic) importance require the 

satisfaction of placement constraints, i.e. the determination of where 

to place a number of components in a given space, without 

overlaps. 

 Some of these applications include: 

- Wood boards cuttings, where a number of smaller pieces should 

be taken from large boards: 

- Similar problem in the textile context; 

- Placement of items into a large container. 

• In the first 2 problems the space to consider is 2D, whereas the third 

problem is a typical 3D application. We will focus on 2D problems. 
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Global Constraints: cumulative - Placement 

 

• An immediate parallelism can be drawn between these 2D problems 

and those of scheduling, if the following correspondences are made: 

- Time      the X dimension; 

- Resources      the Y dimension; 

- A task duration      the item X size (width); 

- A task resource      the item Y size (height). 

 

• Hence, the solutions used before should apparently also be used for 

this new kind of problems, with the above adaptations. 
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Global Constraints: cumulative - Placement 

Example:  

 Find the appropriate cuts to be made on a wood board so as to 

obtain 11 rectangular pieces (A a K). 

 The various pieces to obtain have the following dimensions (width-

W and height-H) 

 W = [ 1, 2, 1, 3, 1, 2, 4, 5, 2, 3, 3] 

 H = [ 2, 1, 3, 1, 4, 2, 1, 1, 3, 2, 3] 

 Graphically 

D

B

K
A

C
E F

G

H

I
J
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Global Constraints: cumulative - Placement 

 

This problem can be thus specified as below 

 

  place(Width, Height):- 

% rectangles definition 

     X = [Ax,Bx,Cx,Dx,Ex,Fx,Gx,Hx,Ix,Jx,Kx], 

     W = [ 2, 1, 1, 3, 1, 2, 4, 5, 2, 3, 3], 

     H = [ 1, 2, 3, 1, 4, 2, 1, 1, 3, 2, 3], 

     X :: 1..Width, 

% constraints in X-origins 

     maximum(X,W,Width), 

     cumulative(X,W,H,Height), 

% enumeration of rectangles X-origin 

     labeling(X).  



77 

Global Constraints: cumulative - Placement 

• Unfortunately, the results obtained have not a direct reading. For 

example, one of the solutions obtained with an 8*6 rectangle is 

X = [ 6, 7, 5, 1, 4, 5, 1, 1, 7, 6, 1] 

 That can be read as (???)                                or as 

D

B

K
A

C
E F

G

H

I
J

D

G

I

BC
A

J
H

E

F
K
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Global Constraints: cumulative - Placement 

 

• To avoid this ambiguity, one should explicitely compute, not only the 

X-origin of the rectangles, but also its Y-origin. 

• Such computation can easily be made, taking into account that all 

that is needed is considering a rotation of 90º in the viewing 

perspective, changing the X with the Y axes. 

• Hence, all that is required is a “duplication” of the previous program, 

considering not only X variables, but also Y variables for explicit 

control over the Y-origins of the rectangles. 



79 

Global Constraints: cumulative - Placement 

 

• Firstly,  new Y variables are created  

 

place(Width,Height):- 

% rectangles definition 

  X = [Ax,Bx,Cx,Dx,Ex,Fx,Gx,Hx,Ix,Jx,Kx], 

  Y = [Ay,By,Cy,Dy,Ey,Fy,Gy,Hy,Iy,Jy,Ky], 

  W = [ 2, 1, 1, 3, 1, 2, 4, 5, 2, 3, 3], 

  H = [ 1, 2, 3, 1, 4, 2, 1, 1, 3, 2, 3], 

  X :: 1..Width, 

  Y :: 1..Height, 

% constraints in X- and Y-origins 

   ... 
% enumeration of rectangles X- and Y origins 
  ... 
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Global Constraints: cumulative - Placement 

 

• Secondly, similar constraints (but with a 90º rotation) are imposed 

on them 

 

 place(Width,Height):- 

% rectangles definition 

  ... 

% constraints in X- and Y-origins 

  maximum(X,W,Width), 

  cumulative(X,W,H,Height), 

  maximum(Y,H,Height), 

  cumulative(Y,H,W,Width), 

% enumeration of rectangles X- and Y- origins 

  labeling(X), 
  labeling(Y). 
  ... 
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Global Constraints: cumulative - Placement 

• Yet, the results still aren‟t what they should be. For example, the 

first solution obtained is 

(X-Y)  [6-2,7-4,5-1,1-5,4-1,5-4,1-1,1-6,7-1,6-5,1-2] 

   corresponding to         

 

 

 

• Analysing the problem, it becomes clear that its cause is the fact 

that no non-overlapping constraint was imposed on the rectangles! 

????? 

D

B

K
A

C
E F

G

H

I
J
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Global Constraints: cumulative - Placement 

 

• The non overlapping of the rectangles defined by their Xi and Yi 

origins and their widths Wi (X-sizes) and heights Hi (Y sizes) is 

guaranteed, as long as one of the constraints below is satisfied (for 

rectangles 1 and 2) 

  X1+W1 =< X2 Rectangle 1 is to the left  of  2 

  X2+W2 =< X1 Rectangle 1 is to the right of 2 

  Y1+H1 =< Y2 Rectangle 1 is       below      2 

  Y2+H2 =< Y1 Rectangle 1 is       above      2 

• As explained before, rather than committing to one of these 

conditions, and change the commitment by backtracking, a better 

option is to adopt a least commitment approach, for example with 

some kind of “cardinality” meta-constraint. 
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Global Constraints: cumulative - Placement 

Important points to stress 

• The enumeration should be made jointly on both the Xi and the Yj, 

hence their merging into a single list Z. 

• Several heuristics could possibly be used for variable enumeration. 

• One could possibly start placing the “largest” rectangles in the 

corners, so as to make room for the others. 

• The Cumulative constraints are not strictly necessary, given the 

overlapping and the maximum constraints applied in both 

dimensions. 

• Yet, they are extremely useful. Without them, the program would 

“hardly” work! 
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Global Constraints: cumulative - Placement 

• The program for the placement problem, showing the symmetry on 

the X and Y axes, is presented below. 
 
 
place(Width,Height):- 

% rectangles definition 

   X = [Ax ... Kx],  Y = [Ay ... Ky], 

   W :: 1..Width, Y :: 1..Height, 

% constraints on X and Y origins 

   maximum(X,W,Width), maximum(Y,H,Height), 

% redundant cumulative constraints 

   cumulative(Y,H,W,Width), cumulative(X,W,H,Height), 

% non overlapping constraints 

   none_overlap(X,Y,D,R), 

% joint enumeration of X and Y origins  

   append(X,Y,Z), 

   labeling(Z). 
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Global Constraints: cumulative - Placement 

• The results obtained show well the importance of using the 

redundant cumulative/4 constraints. Testing the program presented 

with and without these constraints, the following results are obtained 

in 16 ms                                          in 5.407 s  

with cumulative                                without cumulative 

D

B

K
A

C
E F

G

H

I
J
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Placement w/ Rotation 

• An obvious limitation of the program shown is its impossibility to 

“rotate” the components by 90º for better accommodation in the 

available space. 

• Sometimes, a placement is only possible if these rotations are 

performed in some of the components. 

• The changes to make in the program are small. Given constant 

dimensions  Ac - Bc, it must be guaranteed that they are either 

interpreted as Width-Height or as its Height-Width .  

• Given the fixed dimensions, such flexibility is obtained by simple 

constructive disjunction, and user controlled by means of parameter 

Mode (fix/rot) disallowing or allowing rotations, respectively. 
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Placement w/ Rotation 

Example: 

 
 ... Wc = [ 6, 6, 5, 5, 4, 4, 3, 3, 2, 2], 

     Hc = [ 2, 1, 2, 1, 2, 1, 2, 1, 2, 1], 

     domains(Mode,W,H,Wc,Hc), 

 ... 

======================= 

domains(fix, [],[],[],[]). 

domains(fix, [W|Wt],[H|Ht],[Wc|Wtc],[Hc|Htc]):- 

   W = Wc, H = Hc, domains(fix,Td,Tr,Tdc,Trc). 

 

domains(rot, [],[],[],[]). 

domains(rot,[Hd|Td],[Hr|Tr],[Hdc|Tdc],[Hrc|Trc]):- 

   [Hd,Hr] :: [Hdc,Hrc], 

   Hr * Hd #= Hdc * Hrc, 

   domains(rot, Td,Tr,Tdc,Trc). 
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Placement w/ Rotation 

• The labeling of these new variables W and H must now be 

considered in the enumeration. In fact, only one set of these 

variables requires enumeration, since the other is automatically 

computed.  

• A possible heuristic to be used is to label the most difficult 

rectangles first. Here we consider that the difficulty of placing the 

rectangles depends on their largest dimension. Hence we sort them 

in the merge/3 predicate and label them in this order.  

• Only after enumerating the rectangles we enumerate the rotations, 

for the case they had not been set yet. 

          merge( X, Y, Z), 

        labeling(Z), 

        labeling(W), 
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Placement w/ Rotation 

Example:  

 10 rectangles (A to J) must be cut from a wood board with 

rectangular shape, with total area of 60, rotations being allowed for 

better accomodation of the rectangles. The rectangles have the 

following dimensions (width-W and height-H) 

 Wc = [ 6, 6, 5, 5, 4, 4, 3, 3, 2, 2], 

 Hc =  [ 2, 1, 2, 1, 2, 1, 2, 1, 2, 1], 

Graphically,   

I

JB

A

H

G

F

E

D

C
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Placement w/ Rotation 

Results obtained: 
 

Fix mode : 
 

I

JB

A

H

G

F

E

D

C

Width Height ms X-Y

2 30 532 no

3 20 542 no

4 15 542 no

5 12 542 no

6 10 552 no

10 6 40 [1-1,1-3,1-4,1-6,7-1,7-3,6-4,6-6,9-4,9-6]

12 5 40 [1-1,1-3,1-4,6-5,7-1,6-4,10-3,7-3,11-1,11-5]

15 4 50 [1-1,1-3,7-1,1-4,12-1,7-3,11-3,6-4,14-3,9-4]

20 3 40 [1-1,1-3,7-1,7-3,12-1,12-3,16-1,16-3,19-1,19-3]

30 2 120 [1-1,7-1,17-1,7-2,22-1,13-1,26-1,12-2,29-1,15-2]
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Placement w/ Rotation 

Results obtained with rotation (rotated components in red): 
 

Rot mode : 
 

I

JB

A

H

G

F

E

D

C

Width Height ms X-Y

2 30 301 [1-1,1-7,1-16,2-7,1-21,2-12,1-25,1-13,1-28,1-30]

3 20 191 [1-1,1-7,1-13,3-13,2-7,3-1,1-18,1-20,2-11,3-5]

4 15 190 [1-1,1-7,2-7,4-5,3-1,4-10,2-14,1-13,2-12,3-5]

5 12 60 [1-1,1-7,2-7,3-1,4-1,2-12,4-7,3-6,4-10,4-5]

6 10 60 [1-1,1-3,1-4,1-6,1-7,3-7,3-8,6-4,5-8,5-10

10 6 60 [1-1,1-3,1-4,1-6,6-4,6-6,7-1,10-4,9-1,9-3]

12 5 70 [1-1,1-3,1-4,6-4,7-1,7-3,11-1,6-5,11-4,9-5]

15 4 250 [1-1,1-3,7-1,1-4,9-3,15-1,12-1,6-4,13-3,7-3]

20 3 50 [1-1,1-3,7-1,7-3,12-1,12-3,16-1,16-3,19-1,19-3]

30 2 261 [1-1,7-1,16-1,7-2,21-1,12-2,25-1,13-1,28-1,30-1]
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Placement 

Global constraints: 
 

disjoint2(+Rectangles) 
disjoint2(+Rectangles, +Options) 

 
are available in SICStus 
for non-overlapping rectangles. 


